
A BLOCK COORDINATE DESCENT METHOD FOR MULTI-CONVEX OPTIMIZATION

WITH APPLICATIONS TO NONNEGATIVE TENSOR FACTORIZATION AND

COMPLETION

YANGYANG XU∗ AND WOTAO YIN∗

Abstract. This paper considers block multi-convex optimization, where the feasible set and objective function are generally

non-convex but convex in each block of variables. We review some of its interesting examples and propose a generalized block

coordinate descent method. Under certain conditions, we show that any limit point satisfies the Nash equilibrium conditions.

Furthermore, we establish its global convergence and estimate its asymptotic convergence rate by assuming a property based on

the Kurdyka- Lojasiewicz inequality. The proposed algorithms are adapted for factorizing nonnegative matrices and tensors, as

well as completing them from their incomplete observations. The algorithms were tested on synthetic data, hyperspectral data,

as well as image sets from the CBCL and ORL databases. Compared to the existing state-of-the-art algorithms, the proposed

algorithms demonstrate superior performance in both speed and solution quality. The Matlab code is available for download

from the authors’ homepages.

Key words. block multi-convex, block coordinate descent method, Kurdyka- Lojasiewicz inequality, Nash equilibrium,

nonnegative matrix and tensor factorization, matrix completion, tensor completion, proximal gradient method

1. Introduction. In this paper, we consider the optimization problem

min
x∈X

F (x1, ∙ ∙ ∙ ,xs) ≡ f(x1, ∙ ∙ ∙ ,xs) +
s∑

i=1

ri(xi), (1.1)

where variable x is decomposed into s blocks x1, ∙ ∙ ∙ ,xs, the set X of feasible points is assumed to be a closed

and block multi-convex subset of Rn, f is assumed to be a differentiable and block multi-convex function,

and ri, i = 1, ∙ ∙ ∙ , s, are extended-value convex functions. Set X and function f can be non-convex over

x = (x1, ∙ ∙ ∙ ,xs).

We call a set X block multi-convex if its projection to each block of variables is convex, namely, for each

i and fixed (s − 1) blocks x1, ∙ ∙ ∙ ,xi−1,xi+1, ∙ ∙ ∙ ,xs, the set

Xi(x1, ∙ ∙ ∙ ,xi−1,xi+1, ∙ ∙ ∙ ,xs) , {xi ∈ R
ni : (x1, ∙ ∙ ∙ ,xi−1,xi,xi+1, ∙ ∙ ∙ ,xs) ∈ X}

is convex. We call a function f is block multi-convex if for each i, f is a convex function of xi while all the

other blocks are fixed. Therefore, when all but one blocks are fixed, (1.1) over the free block is a convex

problem.

Extended value means ri(xi) = ∞ if xi 6∈ dom(ri), i = 1, ∙ ∙ ∙ , s. In particular, ri (or a part of it) can

be indicator functions of convex sets. We use x ∈ X to model joint constraints and r1, . . . , rs to include

individual constraints of x1, ∙ ∙ ∙ ,xs, when they are present. In addition, ri can include nonsmooth functions.

Our main interest is the block coordinate descent (BCD) method of the Gauss-Seidel type, which mini-

mizes F cyclically over each of x1, ∙ ∙ ∙ ,xs while fixing the remaining blocks at their last updated values. Let

xk
i denote the value of xi after its kth update, and

fk
i (xi) , f(xk

1 , ∙ ∙ ∙ ,xk
i−1,xi,x

k−1
i+1 , ∙ ∙ ∙ ,xk−1

s), for all i and k.

∗yangyang.xu@rice.edu and wotao.yin@rice.edu. Department of Applied and Computational Mathematics, Rice University,

Houston, Texas.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
A Block Coordinate Descent Method for Multi-Convex Optimization with
Applications to Nonnegative Tensor Factorization and Completion

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Rice University ,Department of Applied and
ComputationalMathematics,Houston,TX

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This paper considers block multi-convex optimization, where the feasible set and objective function are
generally non-convex but convex in each block of variables. We review some of its interesting examples and
propose a generalized block coordinate descent method. Under certain conditions, we show that any limit
point satisfies the Nash equilibrium conditions. Furthermore, we establish its global convergence and
estimate its asymptotic convergence rate by assuming a property based on the Kurdyka- Lojasiewicz
inequality. The proposed algorithms are adapted for factorizing nonnegative matrices and tensors, as well
as completing them from their incomplete observations. The algorithms were tested on synthetic data,
hyperspectral data as well as image sets from the CBCL and ORL databases. Compared to the existing
state-of-the-art algorithms, the proposed algorithms demonstrate superior performance in both speed and
solution quality. The Matlab code is available for download from the authors? homepages.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

Same as
Report (SAR)

18. NUMBER
OF PAGES

24

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

At each step, we consider three different updates

Original : xk
i = argmin

xi∈Xk
i

fk
i (xi) + ri(xi), (1.2a)

Proximal : xk
i = argmin

xi∈Xk
i

fk
i (xi) +

Lk−1
i

2
‖xi − xk−1

i ‖2 + ri(xi), (1.2b)

Prox-linear : xk
i = argmin

xi∈Xk
i

〈ĝk
i ,xi − x̂k−1

i 〉 +
Lk−1

i

2
‖xi − x̂k−1

i ‖2 + ri(xi), (1.2c)

where ‖ ∙ ‖ denotes the `2 norm, Lk−1
i > 0,

X k
i = Xi(x

k
1 , ∙ ∙ ∙ ,xk

i−1,x
k−1
i+1 , ∙ ∙ ∙ ,xk−1

s)

and in the last type of update (1.2c),

x̂k−1
i = xk−1

i + ωk−1
i (xk−1

i − xk−2
i) (1.3)

denotes an extrapolated point, ωk−1
i ≥ 0 is the extrapolation weight, ĝk

i = ∇fk
i (x̂k−1

i) is the block-partial

gradient of f at x̂k−1
i . We consider extrapolation (1.3) for update (1.2c) since it significantly accelerates the

convergence of BCD in our applications. The framework of BCD is given in Alg. 1, which allows each xi to

be updated by (1.2a), (1.2b), or (1.2c).

Algorithm 1 Block coordinate descent method for solving (1.1)

Initialization: choose initial two points (x−1
1 , ∙ ∙ ∙ ,x−1

s) = (x0
1, ∙ ∙ ∙ ,x

0
s)

for k = 1, 2, ∙ ∙ ∙ do

for i = 1, 2, ∙ ∙ ∙ , s do

xk
i ← (1.2a), (1.2b), or (1.2c).

end for

if stopping criterion is satisfied then

return (xk
1 , ∙ ∙ ∙ ,xk

s).

end if

end for

Since X and f are block multi-convex, all three subproblems in (1.2) are convex. In general, the three

updates generate different sequences and can thus cause BCD to converge to different solutions. We found

in many tests, applying (1.2c) on all or some blocks give solutions of lower objective values, for a possible

reason that its local prox-linear approximation help avoid the small regions around certain local minima. In

addition, it is generally more time consuming to compute (1.2a) and (1.2b) than (1.2c) though each time the

former two tend to make larger objective decreases than applying (1.2c) without extrapolation. We consider

all of the three updates since they fit different applications, and also different blocks in the same application,

yet their convergence can be analyzes in a unified framework.

Original subproblem (1.2a) is the most-used form in BCD and has been extensively studied. It dates

back to methods in [52] for solving equation systems and to works [5, 24, 61, 70], which analyze the method

assuming F to be convex (or quasiconvex or hemivariate), differentiable, and have bounded level sets except

for certain classes of convex functions. When F is non-convex, BCD may cycle and stagnate [56]. However,

subsequence convergence can be obtained for special cases such as quadratic function [48], strictly pseudo-

convexity in each of (s−2) blocks [22], unique minimizer per block [47], p.195. If F is non-differentiable, BCD

can get stuck at a non-stationary point; see [5] p.94. However, subsequence convergence can be obtained if

2

the non-differentiable part is separable; see works [23, 50, 65, 66] for results on different forms of F . In our

objective function, f is differentiable and possibly non-convex, and the nonsmooth part is block-separable

functions ri.

Proximal subproblem (1.2b) has been used with BCD in [22]. For X = Rn, their work shows that every

limit point is a critical point. Recently, this method is revisited in [4] for only two blocks and shown to

converge globally via the Kurdyka- Lojasiewicz (KL) inequality.

Prox-linear subproblem (1.2c) with extrapolation is new but very similar to the update in the block-

coordinate gradient descent (BGD) method of [67], which identifies a block descent direction by gradient

projection and then performs an Armijo-type line search. [67] does not use extrapolation (1.3). Their work

considers more general f which is smooth but not necessarily multi-convex, but it does not consider joint

constraints. While we are preparing the paper, [57] provides a unified convergence analysis of coordinatewise

successive minimization methods for nonsmooth nonconvex optimization. Those methods update block

variables by minimizing a surrogate function that dominates the original objective around the current iterate.

They do not use extrapolation either and only have subsequence convergence.

There are examples of ri that make (1.2c) easier to compute than (1.2a) and (1.2b). For instance,

if ri = δDi the indicator function of convex set Di (equivalent to xi ∈ Di), (1.2c) reduces to xk
i =

PXk
i ∩Di

(
x̂k−1

i − ĝk−1
i /Lk−1

i

)
, where PXk

i ∩Di
is the project to set X k

i ∩Di. If ri(xi) = λi‖xi‖1 and X k
i = Rni ,

(1.2c) reduces to xk
i = SLk−1

i /λi

(
x̂k−1

i − ĝk−1
i /Lk−1

i

)
, where Sν(∙) is soft-thresholding defined component-

wise as Sν(t) = sign(t)max(|t|−ν, 0). More examples arise in joint/group `1 and nuclear norm minimization,

total variation, etc.

1.1. Contributions. We propose Alg. 1 and establish its global convergence. The algorithm is ap-

plied to two classes problems (i) nonnegative matrix/tensor factorization and (ii) nonnegative matrix/tensor

completion from incomplete observations, and is demonstrated superior than the state-of-the-arts on both

synthetic and real data in both speed and solution quality.

Our convergence analysis takes two steps. Under certain assumptions, the first step establishes the square

summable result
∑

k ‖x
k −xk+1‖2 < ∞ and obtains subsequence convergence to Nash equilibrium points, as

well as global convergence to a single Nash point if the sequence is bounded and the Nash points are isolated.

The second step assumes the KL inequality [13,14] and improves the result to
∑

k ‖x
k − xk+1‖ < ∞, which

gives the algorithm global convergence, as well as asymptotic rates of convergence. The classes of functions

that obey the KL inequality are reviewed. Despite the popularity of BCD, very few works establish global

convergence without the (quasi)convexity assumption on F ; works [48,67] have obtained global convergence

by assuming a local Lipschitzian error bound and the isolation of the isocost surfaces of F . Some very

interesting problems satisfy their assumptions. Their and our assumptions do not contain each other, though

there are problems satisfying both.

1.2. Applications. A large number of practical problems can be formulated in the form of (1.1) such

as convex problems: (group) Lasso [64,74] or the basis pursuit (denoising) [15], low-rank matrix recovery [58],

hybrid huberized support vector machine [69], and so on. We give some non-convex examples as follows.

Blind source separation and sparse dictionary learning. Let si, i = 1, ∙ ∙ ∙ , p, be the source

signals. Given p observed signals xi = Asi + ηi, where A ∈ Cm×n is an unknown mixing matrix and ηi is

noise, i = 1, ∙ ∙ ∙ , p, blind source separation (BSS) [27] aims to estimate both A and s1, ∙ ∙ ∙ , sm. It has found

applications in many areas such as artifact removal [26] and image processing [28]. Two classical approaches

for BBS are principle component analysis (PCA) [62] and independent component analysis (ICA) [18]. If

m < n and no prior information on A and s1, ∙ ∙ ∙ , sm is given, these methods will fail. Assuming s1, ∙ ∙ ∙ , sm

are sparse under some dictionary B, namely, [s1, ∙ ∙ ∙ , sp] = BY and Y is sparse, [12, 78] apply the sparse

3

BSS model

min
A,Y

λ

2
‖ABY − X‖2

F + r(Y), subject to A ∈ D (1.4)

where r(Y) is a regularizer such as r(Y) = ‖Y‖1 =
∑

i,j |yij |, D is a convex set to control the scale of A

such as ‖A‖F ≤ 1, and λ is a balancing parameter. Note that model (1.4) is block multi-convex in A and Y

each but jointly non-convex. A similar model appears in cosmic microwave background analysis [10] which

solves

min
A,Y

λ

2
trace

(
(ABY − X)>C−1(ABY − X)

)
+ r(Y), subject to A ∈ D (1.5)

for a certain covariance matrix C. Algorithms for (sparse) BSS include online learning algorithm [2, 49],

feature extraction method [43], feature sign algorithm [40], and so on.

Model (1.4) with B = I also arises in sparse dictionary training [1, 49], where the goal is to build a

dictionary A that sparsely represented the signals in X.

Nonnegative matrix factorization. Nonnegative matrix factorization (NMF) was first proposed by

Paatero and his coworkers in the area of environmental science [53]. The later popularity of NMF can be

partially attributed to the publication of [38] in Nature. It has been widely applied in data mining such as

text mining [55] and image mining [41], dimension reduction and clustering [16,72], hyperspectral endmember

extraction, as well as spectral data analysis [54]. A widely used model for (regularized) NMF is

min
X≥0,Y≥0

1
2
‖XY − M‖2

F + αr1(X) + βr2(Y), (1.6)

where M is the input nonnegative matrix, r1, r2 are some regularizers promoting solution structures, and α, β

are weight parameters. Two early popular algorithms for NMF are the projected alternating least squares

method [53] and multiplicative updating method [39]. Due to the bi-convexity of the objective in (1.6), a

series of alternating nonnegative least square (ANLS) methods have been proposed such as [30,32,42]; they

are BCDs with update (1.2a). Recently, the classic alternating direction method (ADM) has been applied

in [77]. We compare the proposed algorithms to them in Sec. 4 below.

Nonnegative tensor factorization. Nonnegative tensor factorization (NTF) is a generalization of

NMF to multi-dimensional arrays. The initially used model for NTF was based on CANDECOMP/PARAFAC

tensor decomposition [71]

min
A1,∙∙∙ ,AN≥0

1
2
‖M − A1 ◦ A2 ◦ ∙ ∙ ∙ ◦ AN‖2

F ; (1.7)

and then it was proposed based on Tucker decomposition [34]

min
G,A1,∙∙∙ ,AN≥0

1
2
‖M − G ×1 A1 ×2 A2 ∙ ∙ ∙ ×N AN‖2

F . (1.8)

where M is a given nonnegative tensor, and “◦” and “×n” represent outer product and tensor-matrix

multiplication, respectively. (The necessary background of tensor is reviewed in Sec. 3) Most algorithms for

solving NMF have been directly extended to NTF. For example, the multiplicative update in [53] is extended

to solving (1.7) in [63]. The ANLS methods in [30,32] are extended to solving (1.7) in [31,33]. Algorithms for

solving (1.8) also include the column-wise coordinate descent method [44] and the alternating least square

method [21]. More about NTF algorithms can be found in [75].

4

1.3. Organization. The rest of the paper is organized as follows. Sec. 2 studies the convergence of

Alg. 1. In Sec. 3, Alg. 1 is applied to both the nonnegative matrix/tensor factorization problem and the

completion problem. The numerical results are presented in Sec. 4. Finally, Sec. 5 concludes the paper.

2. Convergence analysis. In this section, we analyze the convergence of Alg. 1 under the following

assumptions.

Assumption 1. F is continuous in dom(F) and infx∈dom(F) F (x) > −∞. Problem (1.1) has a Nash

point (see below for definition).

Assumption 2. Each block i is updated by the same scheme among (1.2a)–(1.2c) for all k. Let I1, I2

and I3 denote the set of blocks updated by (1.2a), (1.2b) and (1.2c), respectively. In addition, there exist

constants 0 < ` ≤ L < ∞ such that

1. for i ∈ I1, fk
i is strongly convex with modulus ` ≤ Lk−1

i ≤ L, namely,

fk
i (u) − fk

i (v) ≥ 〈∇fk
i (v),u − v〉 +

Lk−1
i

2
‖u − v‖2, for all u,v ∈ X k

i ; (2.1)

2. for i ∈ I2, parameters Lk−1
i obey ` ≤ Lk−1

i ≤ L;

3. for i ∈ I3, ∇fk
i is Lipschitz continuous and parameters Lk−1

i obey ` ≤ Lk−1
i ≤ L and

fk
i (xk

i) ≤ fk
i (x̂k−1

i) + 〈ĝk
i ,xk

i − x̂k−1
i 〉 +

Lk−1
i

2
‖xk

i − x̂k−1
i ‖2. (2.2)

The inequality in (2.2) guarantees sufficient decrease of the objective. Taking Lk−1
i as the Lipschitz

constant of ∇fk
i can satisfy (2.2). However, we allow smaller Lk−1

i , which can speed up the algorithm.

For our analysis below, we need the Nash equilibrium condition of (1.1): for i = 1, ∙ ∙ ∙ , s,

F (x̄1, ∙ ∙ ∙ , x̄i−1, x̄i, x̄i+1, ∙ ∙ ∙ , x̄s) ≤ F (x̄1, ∙ ∙ ∙ , x̄i−1,xi, x̄i+1, ∙ ∙ ∙ , x̄s), ∀xi ∈ X̄i, (2.3)

or equivalently

〈∇xif(x̄) + p̄i,xi − x̄i〉 ≥ 0, for all xi ∈ X̄i and for some p̄i ∈ ∂ri(x̄i), (2.4)

where X̄i = Xi(x̄1, ∙ ∙ ∙ , x̄i−1, x̄i+1, ∙ ∙ ∙ , x̄s) and ∂r(xi) is the limiting subdifferential (e.g., see [60]) of r at xi.

We call x̄ a Nash point. Let N be the set of all Nash points, which we assume to be nonempty. As shown

in [4], we have

∂F (x) = {∇x1f(x) + ∂r1(x1)} × ∙ ∙ ∙ × {∇xsf(x) + ∂rs(xs)}.

Therefore, if X = Rn, (2.4) reduces to the first-order optimality condition 0 ∈ ∂F (x̄), and x̄ is a critical

point (or stationary point) of (1.1).

2.1. Preliminary result. The analysis in this subsection follows the following steps. First, we show

sufficient descent at each step (inequality (2.7) below), from which we establish the square summable result

(Lemma 2.2 below). Next, the square summable result is exploited to show that any limit point is a Nash

point in Theorem 2.3 below. Finally, with the additional assumptions of isolated Nash points and bounded

{xk}, global convergence is obtained in Corollary 2.4 below. The first step is essential while the last two

steps use rather standard arguments. We begin with the following lemma similar to Lemma 2.3 of [8].

Lemma 2.1. Let ξ1(u) and ξ2(u) be two convex functions defined on the convex set U and ξ1(u) be

differentiable. Let ξ(u) = ξ1(u) + ξ2(u) and u∗ = argmin
u∈U

〈∇ξ1(v),u − v〉 + L
2 ‖u − v‖2 + ξ2(u). If

ξ1(u
∗) ≤ ξ1(v) + 〈∇ξ1(v), pL(v) − v〉 +

L

2
‖u∗ − v‖2, (2.5)

5

then we have

ξ(u) − ξ(u∗) ≥
L

2
‖u∗ − v‖2 + L〈v − u,u∗ − v〉 for any u ∈ U . (2.6)

Based on this lemma, we can show our key lemma below.

Lemma 2.2 (Square summable ‖xk − xk+1‖). Under Assumptions 1 and 2, let {xk} be the sequence

generated by Alg. 1 with 0 ≤ ωk−1
i ≤ δω

√
Lk−2

i

Lk−1
i

for δω < 1 uniformly over all i ∈ I3 and k. Then
∑∞

k=0 ‖x
k − xk+1‖2 < ∞.

Proof. For i ∈ I3, we have the inequality (2.2) and use Lemma 2.1 by letting F k
i , fk

i + ri and taking

ξ1 = fk
i , ξ2 = ri,v = x̂k−1

i and u = xk−1
i in (2.6) to have

F k
i (xk−1

i) − F k
i (xk

i) ≥
Lk−1

i

2
‖x̂k−1

i − xk
i ‖

2 + Lk−1
i 〈x̂k−1

i − xk−1
i ,xk

i − x̂k−1
i 〉

=
Lk−1

i

2
‖xk−1

i − xk
i ‖

2 −
Lk−1

i

2
(ωk−1

i)2‖xk−2
i − xk−1

i ‖2 (2.7)

≥
Lk−1

i

2
‖xk−1

i − xk
i ‖

2 −
Lk−2

i

2
δ2
ω‖x

k−2
i − xk−1

i ‖2.

For i ∈ I1 ∪ I2 we have F k
i (xk−1

i) − F k
i (xk

i) ≥ Lk−1
i

2 ‖xk−1
i − xk

i ‖
2, and thus the inequality (2.7) still holds

(regard ωk
i ≡ 0 for i ∈ I1 ∪ I2). Therefore,

F (xk−1) − F (xk) =
∑s

i=1

(
F k

i (xk−1
i) − F k

i (xk
i)
)

≥
∑s

i=1

(
Lk−1

i

2 ‖xk−1
i − xk

i ‖
2 − Lk−2

i δ2
ω

2 ‖xk−2
i − xk−1

i ‖2
)

.

Summing the above inequality over k from 1 to K, we have

F (x0) − F (xK) ≥
K∑

k=1

s∑

i=1

(
Lk−1

i

2
‖xk−1

i − xk
i ‖

2 −
Lk−2

i

2
δ2
ω‖x

k−2
i − xk−1

i ‖2

)

≥
K∑

k=1

s∑

i=1

(1 − δ2
ω)Lk−1

i

2
‖xk−1

i − xk
i ‖

2 ≥
K∑

k=1

(1 − δ2
ω)`

2
‖xk−1 − xk‖2.

Since F is lower bounded, taking K → ∞ completes the proof.

Now, we can establish the following preliminary convergence result.

Theorem 2.3 (Limit point is Nash point). Under the assumptions of Lemma 2.2, any limit point of

{xk} is a Nash point, namely, satisfying the Nash equilibrium condition (2.4).

Proof. Let x̄ be a limit point of {xk} and {xkj} be the subsequence converging to x̄. Since {Lk
i } is

bounded, passing another sequence if necessary, we have L
kj

i → L̄i for i = 1, ∙ ∙ ∙ , s as j → ∞. Lemma 2.2

implies that ‖xk+1 − xk‖ → 0, so {xkj+1} also converges to x̄.

For i ∈ I1, we have F
kj+1
i (xkj+1

i) ≤ F
kj+1
i (xi), ∀xi ∈ X kj+1

i . Letting j → ∞, we have (2.3) from the

continuity of F and the closedness of X . Similarly, for i ∈ I2, we have

F (x̄1, ∙ ∙ ∙ , x̄i−1, x̄i, x̄i+1, ∙ ∙ ∙ , x̄s) ≤ F (x̄1, ∙ ∙ ∙ , x̄i−1,xi, x̄i+1, ∙ ∙ ∙ , x̄s) +
L̄i

2
‖xi − x̄i‖

2, ∀xi ∈ X̄i,

namely,

x̄i = argmin
xi∈X̄i

F (x̄1, ∙ ∙ ∙ , x̄i−1,xi, x̄i+1, ∙ ∙ ∙ , x̄s) +
L̄i

2
‖xi − x̄i‖

2. (2.8)

6

Thus, x̄i satisfies the first-order optimality condition of (2.8), which is precisely (2.4). For i ∈ I3, we have

xkj+1
i = argmin

xi∈X
kj+1

i

〈∇f
kj+1
i (x̂kj

i),xi − x̂kj

i 〉 +
L

kj

i

2
‖xi − x̂kj

i ‖2 + ri(xi).

The convex proximal minimization is continuous in the sense that the output xkj+1
i depends continuously

on the input x̂kj

i [59]. Letting j → ∞, from xkj+1
i → x̄i and x̂kj

i → x̄i, we get

x̄i = argmin
xi∈X̄i

〈∇xif(x̄),xi − x̄i〉 +
L̄i

2
‖xi − x̄i‖

2 + ri(xi). (2.9)

Hence, x̄i satisfies the first-order optimality condition of (2.9), which is precisely (2.4). This completes the

proof.

Corollary 2.4 (Global convergence given isolated Nash points). Under the assumptions of Lemma

2.2, we have dist(xk,N) → 0, if {xk} is bounded. Furthermore, if N contains uniformly isolated points,

namely, there is η > 0 such that ‖x − y‖ ≥ η for any distinct points x,y ∈ N , then {xk} converges to a

point in N .

Proof. Suppose dist(xk,N) does not converge to 0. Then there exists ε > 0 and a subsequence {xkj}

such that dist(xkj ,N) ≥ ε for all j. However, the boundedness of {xkj} implies that it must have a limit

point x̄ ∈ N according to Theorem 2.3, which is a contradiction.

From dist(xk,N) → 0, it follows that there is an integer K1 > 0 such that xk ∈ ∪y∈NB(y, η
3) for all

k ≥ K1, where B(y, η
3) , {x ∈ X : ‖x − y‖ < η

3}. In addition, Lemma 2.2 implies that there exists another

integer K2 > 0 such that ‖xk−xk+1‖ < η
3 for all k ≥ K2. Take K = max(K1,K2) and assume xK ∈ B(x̄, η

3)

for some x̄ ∈ N . We claim that for any x̄ 6= y ∈ N , ‖xk − y‖ > η
3 holds for all k ≥ K. This claim can be

shown by induction on k ≥ K. If some xk ∈ B(x̄, η
3), then ‖xk+1 − x̄‖ ≤ ‖xk+1 − xk‖+ ‖xk − x̄‖ < 2η

3 , and

‖xk+1 − y‖ ≥ ‖x̄ − y‖ − ‖xk+1 − x̄‖ >
η

3
, for any x̄ 6= y ∈ N .

Therefore, xk ∈ B(x̄, η
3) for all k ≥ K since xk ∈ ∪y∈NB(y, η

3), and thus {xk} has the unique limit point x̄,

which means xk → x̄.

Remark 2.1. The boundedness of {xk} is guaranteed if the level set {x ∈ X : F (x) ≤ F (x0)} is bounded.

However, the isolation assumption does not hold, or holds but is difficult to verify, for many functions. This

motivates another approach below for global convergence.

2.2. Kurdyka- Lojasiewicz inequality. Before proceeding with our analysis, let us briefly review the

Kurdyka- Lojasiewicz inequality, which is central to the global convergence analysis in the next subsection.

Definition 2.5. A function ψ(x) satisfies the Kurdyka- Lojasiewicz (KL) property at point x̄ ∈ dom(∂ψ)

if there exists θ ∈ [0, 1) such that

|ψ(x) − ψ(x̄)|θ

dist(0, ∂ψ(x))
(2.10)

is bounded around x̄ under the notational conventions: 00 = 1,∞/∞ = 0/0 = 0. In other words, in a certain

neighborhood U of x̄, there exists φ(s) = cs1−θ for some c > 0 and θ ∈ [0, 1) such that the KL inequality

holds

φ′(|ψ(x) − ψ(x̄)|)dist(0, ∂ψ(x)) ≥ 1, for any x ∈ U ∩ dom(∂ψ) and ψ(x) 6= ψ(x̄), (2.11)

where dom(∂ψ) , {x : ∂ψ(x) 6= ∅} and dist(0, ∂ψ(x)) , min{‖y‖ : y ∈ ∂ψ(x)}.

7

This property was introduced by Lojasiewicz [46] on real analytic functions, for which the term with

θ ∈ [12 , 1) in (2.10) is bounded around any critical point x̄. Kurdyka extended this property to functions

on the o-minimal structure in [14,36]. Recently, the KL inequality was extended to nonsmooth sub-analytic

functions [13]. Since it is not trivial to check the conditions in the definition, we give some examples below

that satisfy the KL inequality.

Real analytic functions. A smooth function ϕ(t) on R is analytic if
(

ϕ(k)(t)
k!

) 1
k

is bounded for all k

and on any compact set D ⊂ R. One can verify whether a real function ψ(x) on Rn is analytic by checking

the analyticity of ϕ(t) , ψ(x + ty) for any x,y ∈ Rn. For example, any polynomial function is real analytic

such as ‖Ax − b‖2 and the objectives of (1.7) and (1.8). In addition, it is not difficult to verify that the

non-convex function Lq(x, ε, λ) =
∑n

i=1(x
2
i + ε2)q/2 + 1

2λ‖Ax − b‖2 with 0 < q < 1 considered in [37] for

sparse vector recovery is a real analytic function (the first term is the ε-smoothed `q semi-norm). The logistic

loss function ψ(t) = log(1+ e−t) is also analytic. Therefore, all the above functions satisfy the KL inequality

with θ ∈ [12 , 1) in (2.10).

Locally strongly convex functions. A function ψ(x) is strongly convex in a neighborhood D with

constant μ, if

ψ(y) ≥ ψ(x) + 〈γ(x),y − x〉 +
μ

2
‖x − y‖2, for all γ(x) ∈ ∂ψ(x) and for any x,y ∈ D.

According to the definition and using the Cauchy-Schwarz inequality, we have

ψ(y) − ψ(x) ≥ 〈γ(x),y − x〉 +
μ

2
‖x − y‖2 ≥ −

1
μ
‖γ(x)‖2, for all γ(x) ∈ ∂ψ(x).

Hence, μ(ψ(x) − ψ(y)) ≤ dist(0, ∂ψ(x)), and ψ satisfies the KL inequality (2.11) at any point y ∈ D with

φ(s) = 2
μ

√
s and U = D ∪ {x : ψ(x) ≥ ψ(y)}. For example, the logistic loss function ψ(t) = log(1 + e−t) is

strongly convex in any bounded set D.

Semi-algebraic functions. A set D ⊂ Rn is called semi-algebraic [11] if it can be represented as

D =
s⋃

i=1

t⋂

j=1

{x ∈ Rn : pij(x) = 0, qij(x) > 0},

where pij , qij are real polynomial functions for 1 ≤ i ≤ s, 1 ≤ j ≤ t. A function ψ is called semi-algebraic if

its graph Gr(ψ) , {(x, ψ(x)) : x ∈ dom(ψ)} is a semi-algebraic set.

Semi-algebraic functions are sub-analytic, so they satisfy the KL inequality according to [13, 14]. We

list some known elementary properties of semi-algebraic sets and functions below as they help identify semi-

algebraic functions.

1. If a set D is semi-algebraic, so is its closure cl(D).
2. If D1 and D2 are both semi-algebraic, so are D1 ∪ D2, D1 ∩ D2 and Rn\D1.
3. Indicator functions of semi-algebraic sets are semi-algebraic.
4. Finite sums and products of semi-algebraic functions are semi-algebraic.
5. The composition of semi-algebraic functions is semi-algebraic.

From items 1 and 2, any polyhedral set is semi-algebraic such as the nonnegative orthant Rn
+ = {x ∈ Rn :

xi ≥ 0, ∀i}. Hence, the indicator function δRn
+

is a semi-algebraic function. The absolute value function

ϕ(t) = |t| is also semi-algebraic since its graph is cl(D), where

D = {(t, s) : t + s = 0,−t > 0} ∪ {(t, s) : t − s = 0, t > 0}.

8

Hence, the `1-norm ‖x‖1 is semi-algebraic since it is the finite sum of absolute functions. In addition, the

sup-norm ‖x‖∞ is semi-algebraic, which can be shown by observing

Graph(‖x‖∞) = {(x, t) : t = max
j

|xj |} =
⋃

i

{(x, t) : |xi| = t, |xj | ≤ t, ∀j 6= i}.

Further, the Euclidean norm ‖x‖ is shown to be semi-algebraic in [11]. According to item 5, ‖Ax − b‖1,

‖Ax − b‖∞ and ‖Ax − b‖ are all semi-algebraic functions.

2.3. Global convergence and rate. If {xk} is bounded, then Theorem 2.3 guarantees that there

exists one subsequence converging to a Nash point of (1.1). In this subsection, we assume X = Rn and

strengthen this result for problems with F obeying the KL inequality. Our analysis here was motivated

by [4], which applies the inequality to establish the global convergence of the alternating proximal point

method — the special case of BCD with two blocks and using update (1.2b).

We make the following modification to Alg. 1. From the proof of Lemma 2.2, we can see that this

modification makes F (xk) strictly decreasing.

(M1). Whenever F (xk) ≥ F (xk−1), we re-do the kth iteration with x̂k−1
i = xk−1

i (i.e., no extrapolation) for

all i ∈ I3.

In the sequel, we use the notion Fk = F (xk) and F̄ = F (x̄). First, we establish the following pre-

convergence result, the proof of which is given in the Appendix.

Lemma 2.6. Under Assumptions 1 and 2, let {xk} be the sequence of Alg. 1 with (M1). Let `k =

mini∈I3 Lk
i , and choose Lk

i ≥ `k−1 and ωk
i ≤ δω

√
`k−1

Lk
i

, δω < 1, for all i ∈ I3 and k. Assume that ∇f is

Lipschitz continuous on any bounded set and F satisfies the KL inequality (2.11) at x̄. If x0 is sufficiently

close to x̄ and Fk > F̄ for k ≥ 0, then for some B ⊂ U ∩ dom(∂ψ) with ψ = F in (2.11), {xk} ⊂ B and xk

converges to a point in B.

Remark 2.2. In the lemma, the required closeness of x0 to x̄ depends on U , φ and ψ = F in (2.11) (see

the inequality in (A.1)). The extrapolation weight ωk
i must be smaller than it is in Lemma 2.2 in order to

guarantee sufficient decrease at each iteration.

The following corollary is a straightforward application of Lemma 2.6.

Corollary 2.7. Under the assumptions of Lemma 2.6, {xk} converges to a global minimizer of (1.1)

if the initial point x0 is sufficiently close to any global minimizer x̄.

Proof. Suppose F (xk0) = F (x̄) at some k0. Then xk = xk0 , for all k ≥ k0, according to the update rules

of xk. Now consider F (xk) > F (x̄) for all k ≥ 0, and thus Lemma 2.6 implies that xk converges to some

critical point x∗ if x0 is sufficiently close to x̄, where x0,x∗, x̄ ∈ B. If F (x∗) > F (x̄), then the KL inequality

(2.11) indicates φ′ (F (x∗) − F (x̄)) dist (0, ∂F (x∗)) ≥ 1, which is impossible since 0 ∈ ∂F (x∗).

Next, we give the convergence result of Alg. 1.

Theorem 2.8 (Global convergence). Under the assumptions of Lemma 2.6 and that from any starting

point {xk} has a finite limit point x̄ where F satisfies the KL inequality (2.11), the sequence {xk} converges

to x̄, which is a critical point of (1.1).

Proof. Note that F (xk) is monotonically nonincreasing and converges to F (x̄). If F (xk0) = F (x̄) at

some k0, then xk = xk0 = x̄ for all k ≥ k0 from the update rules of xk. It remains to consider F (xk) > F (x̄)

for all k ≥ 0. Since x̄ is a limit point and F (xk) → F (x̄), there must exist an integer k0 such that xk0 is

sufficiently close to x̄ as required in Lemma 2.6 (see the inequality in (A.1)). The conclusion now directly

follows from Lemma 2.6.

We can also estimate the rate of convergence, and the proof is given in the Appendix.

9

Theorem 2.9 (Convergence rate). Assume the assumptions of Lemma 2.6, and suppose that xk con-

verges to a critical point x̄, at which F satisfies the KL inequality with φ(s) = cs1−θ for c > 0 and θ ∈ [0, 1).

We have:

1. If θ = 0, xk converges to x̄ in finite iterations;

2. If θ ∈ (0, 1
2], ‖xk − x̄‖ ≤ Cτk, ∀k ≥ k0, for certain k0 > 0, C > 0, τ ∈ [0, 1);

3. If θ ∈ (1
2 , 1), ‖xk − x̄‖ ≤ Ck−(1−θ)/(2θ−1), ∀k ≥ k0, for certain k0 > 0, C > 0.

3. Factorization and completion of nonnegative matrices and tensors. In this section, we apply

Alg. 1 with modification (M1) to the factorization and the completion of nonnegative matrices and tensors.

Since a matrix is a two-way tensor, we present the algorithm for tensors. We first overview tensor and its

two popular factorizations.

3.1. Overview of tensor. A tensor is a multi-dimensional array. For example, a vector is a first-order

tensor, and a matrix is a second-order tensor. The order of a tensor is the number of dimensions, also called

way or mode. For an N -way tensor X ∈ RI1×I2×∙∙∙×IN , we let its (i1, i2, ∙ ∙ ∙ , iN)th element be denoted by

xi1i2∙∙∙iN
. Below we list some concepts related to tensor. For more details about tensor, the reader is referred

to the review paper [35].

1. fiber: a fiber of a tensor X is a vector obtained by fixing all indices of X except one. For example,

a row of a matrix is a mode-2 fiber (the 1st index is fixed), and a column is a mode-1 fiber (the 2nd

index is fixed). We use xi1∙∙∙in−1:in+1∙∙∙iN to denote a mode-n fiber of an Nth-order tensor X .

2. slice: a slice of a tensor X is a matrix obtained by fixing all indices of X except two. Take a

third-order tensor X for example. Xi::,X:j:, and X::k denote horizontal, lateral, and frontal slices

of X , respectively.

3. matricization: the mode-n matricization of a tensor X is a matrix whose columns are the mode-n

fibers of X in the lexicographical order. We let X(n) denote the mode-n matricization of X .

4. tensor-matrix product: the mode-n product of a tensor X ∈ RI1×I2×∙∙∙×IN with a matrix A ∈

RJ×In is a tensor of size I1 × ∙ ∙ ∙ In−1 × J × In+1 × ∙ ∙ ∙ × IN defined as

(X ×n A)i1∙∙∙in−1jin+1∙∙∙iN
=

In∑

in=1

xi1i2∙∙∙iN
ajin . (3.1)

In addition, we briefly review the matrix Kronecker, Khatri-Rao and Hadamard products below, which

we use to derive tensor-related computations.

The Kronecker product of matrices A ∈ Rm×n and B ∈ Rp×q is an mp × nq matrix defined by A ⊗

B = [aijB]mp×nq. The Khatri-Rao product of matrices A ∈ Rm×q and B ∈ Rp×q is an mp × q matrix:

A � B = [a1 ⊗ b1, a2 ⊗ b2, ∙ ∙ ∙ , aq ⊗ bq] , where ai,bi are the ith columns of A and B, respectively. The

Hadamard product of matrices A,B ∈ Rm×n is the componentwise product defined by A ∗B = [aijbij]m×n.

Two important tensor decompositions are the CANDECOMP/PARAFAC (CP) [29] and Tucker [68]

decompositions. The former one decomposes a tensor X ∈ RI1×I2×∙∙∙×IN in the form of X = A1◦A2◦∙ ∙ ∙◦AN ,

where An ∈ RIn×r, n = 1, ∙ ∙ ∙ , N are factor matrices, r is the tensor rank of X , and the outer product “◦”

is defined as

xi1i2∙∙∙iN =
r∑

j=1

a
(1)
i1ja

(2)
i2j ∙ ∙ ∙ a

(N)
iN j , for in ∈ [In], n = 1, ∙ ∙ ∙ , N,

where a
(n)
ij is the (i, j)th element of An and [I] , {1, 2, ∙ ∙ ∙ , I}. The latter Tucker decomposition decomposes

a tensor X in the form of X = G ×1 A1 ×2 A2 ∙ ∙ ∙ ×N AN , where G ∈ RJ1×J2×∙∙∙×JN is called the core tensor

and An ∈ RIn×Jn , n = 1, ∙ ∙ ∙ , N are factor matrices.

10

3.2. An algorithm for nonnegative tensor factorization. One can obtain a nonnegative CP de-

composition of a nonnegative tensor tensor M ∈ RI1×∙∙∙×IN by solving

min
1
2
‖M − A1 ◦ A2 ◦ ∙ ∙ ∙ ◦ AN‖2

F , subject to An ∈ RIn×r
+ , n = 1, ∙ ∙ ∙ , N (3.2)

where r is a specified order and the Frobenius norm of a tensor X ∈ RI1×∙∙∙×IN is defined as ‖X‖F =√∑
i1,i2,∙∙∙ ,iN

x2
i1i2∙∙∙iN

. Similar models based on the CP decomposition can be found in [19,31,33]. One can

obtain a nonnegative Tucker decomposition of M by solving

min
1
2
‖M − G ×1 A1 ×2 A2 ∙ ∙ ∙ ×N AN‖2

F , subject to G ∈ RJ1×∙∙∙×JN
+ ,An ∈ RIn×Jn

+ , ∀n, (3.3)

as in [34, 44, 51]. Usually, it is computationally expensive to update G. Since applying Alg. 1 to problem

(3.3) involves lots of computing details, we focus on applying Alg. 1 with update (1.2c) to problem (3.2).

Let A = (A1, ∙ ∙ ∙ ,AN) and

F (A) = F (A1,A2, ∙ ∙ ∙ ,AN) =
1
2
‖M − A1 ◦ A2 ◦ ∙ ∙ ∙ ◦ AN‖2

F

be the objective of (3.2). Consider updating An at iteration k. Using the fact that if X = A1 ◦A2 ◦∙ ∙ ∙◦AN ,

then X(n) = An (AN � ∙ ∙ ∙An+1 � An−1 ∙ ∙ ∙A1)
>, we have

F (A) =
1
2

∥
∥
∥M(n) − An (AN � ∙ ∙ ∙An+1 � An−1 ∙ ∙ ∙A1)

>
∥
∥
∥

2

F
,

and

∇AnF =
(
An (AN � ∙ ∙ ∙An+1 � An−1 ∙ ∙ ∙A1)

> − M(n)

)
(AN � ∙ ∙ ∙An+1 � An−1 ∙ ∙ ∙A1) .

Let

Bk−1 = Ak−1
N � ∙ ∙ ∙Ak−1

n+1 � Ak
n−1 ∙ ∙ ∙A

k
1 . (3.4)

We take Lk−1
n = max(`k−2, ‖(Bk−1)>Bk−1‖), where `k−2 = minn Lk−2

n and ‖A‖ is the spectral norm of A.

Let

ωk−1
n = min

(

ω̂k−1, δω

√
`k−2

Lk−1
n

)

(3.5)

where δω < 1 is pre-selected and ω̂k−1 = tk−1−1
tk

with t0 = 1 and tk = 1
2

(
1 +

√
1 + 4t2k−1

)
. In addition, let

Âk−1
n = Ak−1

n +ωk−1
n (Ak−1

n −Ak−2
n), and Ĝk−1

n =
(
Âk−1

n (Bk−1)> − M(n)

)
Bk−1 be the gradient. Then we

derive the update (1.2c):

Ak
n = argmin

An≥0

〈
Ĝk−1

n ,An − Âk−1
n

〉
+

Lk−1
n

2

∥
∥
∥An − Âk−1

n

∥
∥
∥

2

F
,

which can be written in the closed form

Ak
n = max

(
0, Âk−1

n − Ĝk−1
n /Lk−1

n

)
. (3.6)

At the end of iteration k, we check whether F
(
Ak
)
≥ F

(
Ak−1

)
. If so, we re-update Ak

n by (3.6) with

Âk−1
n = Ak−1

n , for n = 1, ∙ ∙ ∙ , N .

Remark 3.1. In (3.6), Ĝk−1
n is most expensive to compute. To efficiently compute it, we write Ĝk−1

n =

Âk−1
n (Bk−1)>Bk−1 − M(n)Bk−1. Using (A � B)>(A � B) = (A>A) ∗ (B>B), we compute (Bk−1)>Bk−1

by

(Bk−1)>Bk−1 =
(
(Ak

1)>Ak
1

)
∗ ∙ ∙ ∙ ∗

(
(Ak

n−1)
>Ak

n−1

)
∗
(
(Ak−1

n+1)
>Ak−1

n+1

)
∗ ∙ ∙ ∙ ∗

(
(Ak−1

N)>Ak−1
N

)
.

Then, M(n)Bk−1 can be obtained by the matricized-tensor-times-Khatri-Rao-product [6].

Alg. 2 summarizes how to apply Alg. 1 with update (1.2c) to problem (3.2).

11

Algorithm 2 Alternating proximal gradient method for solving (3.2)
Input: nonnegative N -way tensor M and rank r.

Output: nonnegative factors A1, ∙ ∙ ∙ ,AN .

Initialization: choose a positive number δω < 1 and randomize A−1
n = A0

n, n = 1, ∙ ∙ ∙ , N , as nonnegative matrices

of appropriate sizes.

for k = 1, 2, ∙ ∙ ∙ do

for n = 1, 2, ∙ ∙ ∙ , N do

Compute Lk−1
n and set ωk−1

n according to (3.5);

Let Âk−1
n = Ak−1

n + ωk−1
n (Ak−1

n −Ak−2
n);

Update Ak
n according to (3.6).

end for

if F
(
Ak
)
≥ F

(
Ak−1

)
then

Re-update Ak
n according to (3.6) with Âk−1

n = Ak−1
n , n = 1, ∙ ∙ ∙ , N

end if

if stopping criterion is satisfied then

Return Ak
1 , ∙ ∙ ∙ ,Ak

N .

end if

end for

3.3. Convergence results. Since problem (3.2) is a special case of problem (1.1), the convergence

results in Sec. 2 apply to Alg. 2. Let Dn = RIn×r
+ and δDn(∙) be the indicator function on Dn for

n = 1, ∙ ∙ ∙ , N . Then (3.2) is equivalent to

min
A1,∙∙∙ ,AN

Q(A) ≡ F (A) +
N∑

n=1

δDn(An). (3.7)

According to the discussion in Sec. 2.2, Q is a semi-algebraic function and satisfies the KL property

(2.10) at any feasible point. Further, we get θ 6= 0 in (2.10) for Q at any critical point. By writing

the first-order optimality conditions of (3.7), one can find that if
(
Ā1, ∙ ∙ ∙ , ĀN

)
is a critical point, then so

is
(
tĀ1,

1
t Ā2, Ā3, ∙ ∙ ∙ , ĀN

)
for any t > 0. Therefore, from Theorems 2.8 and 2.9 and the above discussions,

we have

Theorem 3.1. Let {Ak} be the sequence generated by Alg. 2. Assume 0 < ` ≤ `k ≤ Lk
n ≤ L < ∞ for

all n and k. Then {Ak} converges to a critical point Ā, and the asymptotic convergence rates in parts 2 and

3 of Theorem 2.9 apply.

Remark 3.2. A simple way to satisfy the upper boundedness condition of Lk−1
n is to scale (A1, ∙ ∙ ∙ ,AN)

so that ‖A1‖F = ∙ ∙ ∙ = ‖AN‖F after each iteration, and the lower boundedness condition can be satisfied if

the initial point is zero.

3.4. An algorithm for nonnegative tensor completion. Alg. 2 can be easily modified for solving

the nonnegative tensor completion problem

min
A1,∙∙∙ ,AN≥0

1
2
‖PΩ(M − A1 ◦ A2 ◦ ∙ ∙ ∙ ◦ AN)‖2

F , (3.8)

where Ω ⊂ [I1]× [I2]× ∙ ∙ ∙ [IN] is the index set of the observed entries of M and PΩ(X) keeps the entries of

X in Ω and sets the remaining ones to zero. Nonnegative matrix completion (corresponding to N = 2) has

been proposed in [73], where it is demonstrated that a low-rank and nonnegative matrix can be recovered

from a small set of its entries by taking advantages of both low-rankness and nonnegative factors . To solve

12

(3.8), we transform it into the equivalent problem

min
X ,An≥0,n=1,∙∙∙ ,N

G(A, X) ≡
1
2
‖X − A1 ◦ A2 ◦ ∙ ∙ ∙ ◦ AN‖2

F , subject to PΩ(X) = PΩ(M). (3.9)

Our algorithm shall cycle through the decision variables A1, ∙ ∙ ∙ ,AN and X . To save space, we describe a

modification to Alg. 2. At each iteration of Alg. 2, we set its M to X k−1 and, after its updates (1.2c) on

A1, ∙ ∙ ∙ ,AN , perform update (1.2a) on X as

X k = PΩ(M) + PΩc(Ak
1 ◦ ∙ ∙ ∙ ◦ Ak

N), (3.10)

where Ωc is the complement of Ω. Note that for a fixed A, G(A, X) is a strongly convex function of X with

modulus 1, Hence, the convergence result for Alg. 2 still holds for this algorithm with extra update (3.10).

4. Numerical results. In this section, we test Alg. 2 for nonnegative matrix and three-way tensor

factorization, as well as their completion. In our implementations, we simply choose δω = 1. The algorithm

is terminated whenever Fk−Fk+1

1+Fk
≤ tol holds for three iterations in a row or Fk

‖M‖F
≤ tol is met, where Fk is

the objective value after iteration k and tol is specified below. We compare

• APG-MF: nonnegative matrix factorization (NMF) by Alg. 2 in Sec. 3.2;

• APG-TF: nonnegative tensor factorization (NTF) by Alg. 2 in Sec. 3.2;

• APG-MC: nonnegative matrix completion (NMC) by modified Alg. 2 in Sec. 3.4;

• APG-TC: nonnegative tensor completion (NTC) by modified Alg. 2 in Sec. 3.4.

All the tests were performed on a laptop with an i7-620m CPU and 3GB RAM and running 32-bit Windows

7 and Matlab 2010b with Tensor Toolbox of version 2.5 [7].

4.1. Nonnegative matrix factorization. We choose to compare the most popular and recent algo-

rithms. The first two compared ones are the alternating least square method (Als-MF) [9, 53] and multi-

plicative updating method (Mult-MF) [39], which are available as MATLAB’s function nnmf with specifiers

als and mult, respectively. The recent ANLS method Blockpivot-MF is compared since it outperforms all

other compared ANLS methods in both speed and solution quality [32]. Another compared algorithm is

the recent ADM-based method ADM-MF [77]. Although both Blockpivot-MF and ADM-MF have superior

performance than Als-MF and Mult-MF, we include them in the first two tests below due to their popularity.

We set tol = 10−4 for all the compared algorithms except ADM-MF, for which we set tol = 10−5

since it is a dual algorithm and 10−4 is too loose. The maximum number of iterations is set to 2000 for

all the compared algorithms. The same random starting points are used for all the algorithms except for

Mult-MF. Since Mult-MF is very sensitive to initial points, we set the initial point by running Mult-MF 10

iterations for 5 independent times and choose the best one. All the other parameters for Als-MF, Mult-MF,

Blockpivot-MF and ADM-MF are set to their default values.

4.1.1. Synthetic data. Each matrix in this test is exactly low-rank and can be written in the form

of M = LR, where L and R are generated by MATLAB commands max(0,randn(m,q)) and rand(q,n),

respectively. It is worth mentioning that generating R by rand(q,n) makes the problems more difficult

than max(0,randn(q,n)) or abs(randn(q,n)). The algorithms are compared with fixed n = 1000 and m

chosen from {200, 500, 1000}, q from {10, 20, 30}. The parameter r is set to q in (3.2). We use relative error

relerr = ‖A1A2 − M‖F /‖M‖F and CPU time (in seconds) to measure performance. Table 4.1 lists the

average results of 20 independent trials. From the table, we can see that APG-MF outperforms all the other

algorithms in both CPU time and solution quality.

4.1.2. Image data. In this subsection, we compare APG-MF (proposed), ADM-MF, Blockpivot-MF,

Als-MF and Mult-MF on the CBCL and ORL image databases used in [25,42]. There are 6977 face images

13

Table 4.1

Comparison on nonnegative random m × n matrices for n = 1000; bold are large error or slow time.

APG-MF† (prop’d) ADM-MF Blockpivot-MF Als-MF Mult-MF

m r relerr time relerr time relerr time relerr time relerr time

200 10 9.98e-5 7.16e-1 2.24e-3 1.04e+0 5.36e-4 1.30e+0 7.39e-3 1.04e+0 3.61e-2 2.67e+0

200 20 9.97e-5 2.09e+0 3.02e-3 2.80e+0 1.02e-3 4.71e+0 1.01e-2 2.33e+0 4.64e-2 3.61e+0

200 30 9.97e-5 4.72e+0 4.55e-3 5.70e+0 1.75e-3 1.06e+1 1.04e-2 4.54e+0 4.09e-2 5.53e+0

500 10 9.98e-5 1.61e+0 2.26e-3 2.39e+0 5.11e-4 2.38e+0 1.15e-2 2.99e+0 3.58e-2 7.76e+0

500 20 9.98e-5 3.66e+0 2.82e-3 4.38e+0 5.53e-4 6.86e+0 1.08e-2 6.31e+0 4.96e-2 7.99e+0

500 30 9.98e-5 7.75e+0 3.51e-3 8.34e+0 5.75e-4 1.37e+1 1.29e-2 9.95e+0 4.42e-2 1.20e+1

1000 10 9.98e-5 2.86e+0 2.11e-3 3.44e+0 4.99e-4 3.18e+0 1.54e-3 8.04e+0 3.25e-2 1.55e+1

1000 20 9.98e-5 7.44e+0 2.82e-3 7.19e+0 5.46e-4 1.05e+1 1.74e-2 1.75e+1 4.96e-2 1.61e+1

1000 30 9.98e-5 1.27e+1 3.01e-3 1.28e+1 5.76e-4 2.00e+1 1.99e-2 2.61e+1 4.57e-2 2.21e+1

†: the relerr values of APG-MF are nearly the same due to the use of the same stopping tolerence.

Table 4.2

Comparison on 2000 selected images from the CBCL face database; bold are large error or slow time.

APG-MF (proposed) ADM-MF Blockpivot-MF Als-MF Mult-MF

r relerr time relerr time relerr time relerr time relerr time

30 1.91e-1 3.68 1.92e-1 7.33 1.90e-1 21.5 3.53e-1 3.15 2.13e-1 6.51

60 1.42e-1 12.5 1.43e-1 19.5 1.40e-1 63.2 4.59e-1 1.80 1.74e-1 12.1

90 1.13e-1 26.7 1.15e-1 34.2 1.12e-1 111 6.00e-1 2.15 1.52e-1 18.4

in the training set of CBCL, each having 19 × 19 pixels. Multiple images of each face are taken with varying

illuminations and facial expressions. The first 2000 images are used for test. We vectorize every image

and obtain a matrix M of size 361 × 2000. Rank r is chosen from {30, 60, 90}. The average results of

10 independent trials are given in Table 4.2. We can see that APG-MF outperforms ADM-MF in both

speed and solution quality. APG-MF is as accurate as Blockpivot-MF but runs much faster. Als-MF and

Mult-MF fail this test, and Als-MF stagnates at solutions of low quality at the very beginning. Due to the

poor performance of Als-MF and Mult-MF, we only compare APG-MF, ADM-MF and Blockpivot-MF in

the remaining tests.

The ORL database has 400 images divided into 40 groups. Each image has 112 × 92 pixels, and each

group has 10 images of one face taken from 10 different directions and with different expressions. All the

images are used for test. We vectorize each image and obtain a matrix M of size 10304×400. As in last test,

we choose r from {30, 60, 90}. The average results of 10 independent trials are listed in Table 4.3. From the

results, we can see again that APG-MF is better than ADM-MF in both speed and solution quality, and in

far less time APG-MF achieves comparable relative errors as Blockpivot-MF.

4.1.3. Hyperspectral data. It has been shown in [54] that NMF can be applied to spectral data

analysis. In [54], a regularized NMF model is also considered with penalty terms α‖A1‖2
F and β‖A2‖2

F

added in the objective of (3.2). The parameters α and β can be tuned for specific purposes in practice.

Here, we focus on the original NMF model to show the effectiveness of our algorithm. However, our method

can be easily modified for solving the regularized NMF model. In this test, we use a 150 × 150 × 163

hyperspectral cube to test the compared algorithms. Each slice of the cube is reshaped as a column vector,

and a 22500 × 163 matrix M is obtained. In addition, the cube is scaled to have a unit maximum element.

Four selected slices before scaling are shown in Figure 4.1 corresponding to the 1st, 50th, 100th and 150th

columns of M. The dimension r is chosen from {20, 30, 40, 50}, and Table 4.4 lists the average results of 10

independent trials. We can see from the table that APG-MF is superior to ADM-MF and Blockpivot-MF

14

Table 4.3

Comparison on the images from the ORL face database; bold are slow time.

APG-MF (proposed) ADM-MF Blockpivot-MF

r relerr time relerr time relerr time

30 1.67e-1 15.8 1.71e-1 46.5 1.66e-1 74.3

60 1.41e-1 42.7 1.45e-1 88.0 1.40e-1 178

90 1.26e-1 76.4 1.30e-1 127 1.25e-1 253

Fig. 4.1. Hyperspectral recovery at sample ratio SR = 0.20 and run time T = 50; four selected slices are shown

in both speed and solution quality.

4.1.4. Nonnegative matrix completion. In this subsection, we compare APG-MC and the ADM-

based algorithm (ADM-MC) proposed in [73] on the hyperspectral data used in last test. It is demonstrated

in [73] that ADM-MC outperforms other matrix completion solvers such as APGL and LMaFit on recovering

nonnegative matrices because ADM-MC takes advantages of data nonnegativity while the latter two do not.

We fix the dimension r = 40 in (3.8) and choose sample ratio SR , |Ω|
mn from {0.20, 0.30, 0.40}, where the

samples in Ω are chosen at random. The parameter δω for APG-MC is set to 1, and all the parameters for

ADM-MC are set to their default values. To make the comparison consistent, we let both of the algorithms

run to a maximum time (sec) T = 50, 100, and we employ peak-signal-to-noise-ratio (PSNR) and mean

squared error (MSE) to measure the performance of the two algorithms. Table 4.5 lists the average results

of 10 independent trials. From the table, we can see that APG-MC is significantly better than ADM-MC in

all cases.

4.2. Nonnegative three-way tensor factorization. To the best of our knowledge, all the existing

algorithms for nonnegative tensor factorizations are extensions of those for nonnegative matrix factorization

including multiplicative updating method [71], hierachical alternating least square algorithm [19], alternaing

Poisson regression algorithm [17] and alternating nonnegative least square (ANLS) methods [31, 33]. We

compare APG-TF with two ANLS methods AS-TF [31] and Blockpivot-TF [33], which are also proposed

based on the CP decomposition and superior over many other algorithms. We set tol = 10−4 and maxit =

2000 for all the compared algorithms. All the other parameters for Blockpivot-TF and AS-TF are set to

their default values.

4.2.1. Synthetic data. We compare APG-TF, Blockpivot-TF and AS-TF on randomly generated

three-way tensors. Each tensor is M = L ◦ C ◦ R, where L,C are generated by MATLAB commands

max(0,randn(N1,q)) and max(0,randn(N2,q)), respectively, and R by rand(N3,q). The algorithms are

compared with two sets of (N1, N2, N3) and r = q = 10, 20, 30. The relative error relerr = ‖M − A1 ◦ A2 ◦

A3‖F /‖M‖F and CPU time (sec) measure the performance of the algorithms. The average results of 10

independent runs are shown in Table 4.6, from which we can see that all the algorithms give similar results.

4.2.2. Image test. NMF does not utilize the spatial redundancy, and the matrix decomposition is not

unique. Also, NMF factors tend to form the invariant parts of all images as ghosts while NTF factors can

correctly resolve all the parts [63]. We compare APG-TF, Blockpivot-TF and AS-TF on two nonnegative

15

Table 4.4

Comparison on hyperspectral data of size 150 × 150 × 163; bold are large error or slow time.

APG-MF (proposed) ADM-MF Blockpivot-MF

r relerr time relerr time relerr time

20 1.18e-2 34.2 2.34e-2 87.5 1.38e-2 62.5

30 9.07e-3 63.2 2.02e-2 116 1.10e-2 143

40 7.56e-3 86.2 1.78e-2 140 9.59e-3 194

50 6.45e-3 120 1.58e-2 182 8.00e-3 277

Table 4.5

Comparison on a hyperspectral data at stopping time T = 50, 100 (sec); bold are large error.

T = 50 APG-MC (proposed) ADM-MC T = 100 APG-MC (proposed) ADM-MC

Smpl. Rate PSNR MSE PSNR MSE Smpl. Rate PSNR MSE PSNR MSE

0.20 32.30 5.89e-4 28.72 1.35e-3 0.20 32.57 5.54e-4 28.80 1.33e-3

0.30 40.65 8.62e-5 33.58 4.64e-4 0.30 41.19 7.61e-5 33.69 4.52e-4

0.40 45.77 2.66e-5 38.52 1.46e-4 0.40 46.03 2.50e-5 38.69 1.41e-4

three-way tensors in [63]. Each slice of the tensors corresponds to an image. The first tensor is 19 × 19 × 2000

and is formed from 2000 images in the CBCL database, used in Sec. 4.1.2. The average performance of

10 independent runs with r = 40, 50, 60 are shown in Table 4.7. Another one has the size of 32 × 32 × 256

and is formed with the 256 images in the Swimmer dataset [20]. The results of 10 independent runs with

r = 40, 50, 60 are listed in Table 4.8. Both tests show that APG-TF is consistently faster than Blockpivot-

TF and AS-TF. In particular, APG-TF is much faster than Blockpivot-TF and AS-TF with better solution

quality in the second test.

4.2.3. Hyperspectral data. NTF is employed in [76] for hyperspectral unmixing. It is demonstrated

that the cubic data can be highly compressed and NTF is efficient to identify the material signatures. We

compare APG-TF with Blockpivot-TF and AS-TF on the 150 × 150× 163 hyperspectral cube, which is used

in Sec. 4.1.3. For consistency, we let them run to a maximum time T and compare the relative errors. The

parameter r is chosen from {30, 40, 50, 60}. The relative errors corresponding to T = 10, 25, 50, 100 are shown

in Table 4.9, as the average of 10 independent trials. We can see from the table that APG-TF achieves the

same accuracy much earlier than Blockpivot-TF and AS-TF.

4.2.4. Nonnegative tensor completion. Recently, [45] proposes tensor completion based on mini-

mizing tensor n-rank, the matrix rank of mode-n matricization of a tensor. Using the matrix nuclear norm

instead of matrix rank, they solve the convex program

min
X

N∑

n=1

αn‖X(n)‖∗, subject to PΩ(X) = PΩ(M), (4.1)

where αn’s are pre-specified weights satisfying
∑

n αn = 1 and ‖A‖∗ is the nuclear norm of A defined as the

sum of singular values of A. Meanwhile, they proposed some algorithms to solve (4.1) or its relaxed versions,

including simple low-rank tensor completion (SiLRTC), fast low-rank tensor completion (FaLRTC) and high

accuracy low-rank tensor completion (HaLRTC). We compare APG-TC with FaLRTC on synthetic three-

way tensors since FaLRTC is more efficient and stable than SiLRTC and HaLRTC. Each tensor is generated

similarly as in Sec. 4.2.1. Rank q is chosen from {10, 20, 30} and sampling ratio SR = |Ω|/(N1N2N3) from

{0.10, 0.30, 0.50}. For APG-TC, we use r = q and r = b1.25qc in (3.8). We set tol = 10−4 and maxit = 2000

for both algorithms. The weights αn’s in (4.1) are set to αn = 1
3 , n = 1, 2, 3, and the smoothing parameters

for FaLRTC are set to μn = 5αn

Nn
, n = 1, 2, 3. Other parameters of FaLRTC are set to their default values.

16

Table 4.6

Comparison on synthetic three-way tensors; bold are large error or slow time.

Problem Setting APG-TF (proposed) AS-TF Blockpivot-TF

N1 N2 N3 q relerr time relerr time relerr time

80 80 80 10 8.76e-005 4.39e-001 7.89e-005 8.64e-001 8.62e-005 8.19e-001

80 80 80 20 9.47e-005 1.26e+000 1.97e-004 1.45e+000 1.77e-004 1.21e+000

80 80 80 30 9.65e-005 2.83e+000 2.05e-004 2.13e+000 2.07e-004 1.95e+000

50 50 500 10 9.15e-005 1.27e+000 1.07e-004 1.91e+000 9.54e-005 1.87e+000

50 50 500 20 9.44e-005 3.42e+000 1.86e-004 3.17e+000 1.77e-004 3.47e+000

50 50 500 30 9.74e-005 7.11e+000 1.89e-004 5.04e+000 1.88e-004 4.54e+000

Table 4.7

Comparison results on CBCL database; bold are slow time.

APG-TF (proposed) AS-TF Blockpivot-TF

r relerr time relerr time relerr time

40 1.85e-001 9.95e+000 1.86e-001 2.99e+001 1.85e-001 2.04e+001

50 1.68e-001 1.65e+001 1.68e-001 4.55e+001 1.69e-001 2.47e+001

60 1.53e-001 2.13e+001 1.56e-001 4.16e+001 1.56e-001 2.85e+001

The average results of 10 independent trials are shown in Table 4.10. We can see that APG-TC produces

much more accurate solutions within less time.

4.3. Summary. Although our test results are obtained with a given set of parameters, it is clear from

the results that, compared to the existing algorithms, the proposed ones can return solutions of similar or

better quality in less time. Tuning the parameters of the compared algorithms can hardly obtain much

improvement in both solution quality and time. We believe that the superior performance of the proposed

algorithms is due to the use of prox-linear steps, which are not only easy to compute but also, as a local

approximate, help avoid the small regions around certain local minima.

5. Conclusions. We have proposed a block coordinate descent method with three choices of update

schemes for multi-convex optimization, with subsequence and global convergence guarantees under certain

assumptions. It appears to be the first globally converging algorithm for nonnegative matrix/tensor factor-

ization problems. Numerical results on both synthetic and real image data illustrate the high efficiency of

the proposed algorithm.

Acknowledgements. This work is partly supported by ARL and ARO grant W911NF-09-1-0383,

NSF grants DMS-0748839 and ECCS-1028790, and ONR Grant N00014-08-1-1101. The authors would like

to thank Zhi-Quan (Tom) Luo for very help discussions and sharing his manuscript [57].

Appendix A. Proofs of Lemma 3 and Theorem 3.

A.1. Proof of Lemma 2.6. Without loss of generality, we assume F̄ = 0. Otherwise, we can consider

F − F̄ . Let B(x̄, ρ) , {x : ‖x− x̄‖ ≤ ρ} ⊂ U for some ρ > 0 where U is the neighborhood of x̄ in (2.11) with

ψ = F , and let LG be the global Lipschitz constant for ∇xi
f(x), i = 1, ∙ ∙ ∙ , s within B(x̄,

√
10ρ), namely,

‖∇xi
f(x) −∇xi

f(y)‖ ≤ LG‖x − y‖, i = 1, ∙ ∙ ∙ , s

for any x,y ∈ B(x̄,
√

10ρ). In addition, let C1 = 9(L+sLG)
2`(1−δω)2 and C2 = 2

√
2
` + 3

1−δω

√
2+2δ2

ω

` . Suppose

C1φ(F0 − F̄) + C2

√
F0 − F̄ + ‖x0 − x̄‖ < ρ, (A.1)

17

Table 4.8

Comparison results on Swimmer database; bold are large error or slow time.

APG-TF (proposed) AS-TF Blockpivot-TF

r relerr time relerr time relerr time

40 2.43e-001 2.01e+000 2.71e-001 2.09e+001 2.53e-001 2.50e+001

50 1.45e-001 3.21e+000 2.00e-001 5.54e+001 1.87e-001 3.23e+001

60 3.16e-002 6.91e+000 1.10e-001 3.55e+001 7.63e-002 3.74e+001

Table 4.9

Relative errors on hyperspectral data.

APG-TF (proposed) AS-TF Blockpivot-TF

r \ T 10 25 50 100 10 25 50 100 10 25 50 100

30 2.56e-1 2.53e-1 2.53e-1 2.53e-1 2.60e-1 2.56e-1 2.54e-1 2.53e-1 2.60e-1 2.56e-1 2.54e-1 2.53e-1

40 2.32e-1 2.27e-1 2.26e-1 2.26e-1 2.37e-1 2.30e-1 2.28e-1 2.26e-1 2.36e-1 2.29e-1 2.28e-1 2.27e-1

50 2.14e-1 2.07e-1 2.04e-1 2.04e-1 2.20e-1 2.11e-1 2.07e-1 2.06e-1 2.17e-1 2.10e-1 2.07e-1 2.05e-1

60 2.00e-1 1.91e-1 1.87e-1 1.86e-1 2.04e-1 1.95e-1 1.91e-1 1.88e-1 2.01e-1 1.94e-1 1.90e-1 1.88e-1

which quantifies how close to x̄ the initial point needs to be. We go to show xk ∈ B(x̄, ρ) for all k ≥ 0 and

the estimation

∞∑

k=N

‖xk+1 − xk‖ ≤ C1φ(FN − F̄) + ‖xN−1 − xN−2‖ +
2 + δω

1 − δω
‖xN − xN−1‖, ∀N ≥ 2. (A.2)

First, we prove xk ∈ B(x̄, ρ) by induction on k. Obviously, x0 ∈ B(x̄, ρ). For k = 1, we have from (2.7)

that

F0 ≥ F0 − F1 ≥
s∑

i=1

L0
i

2
‖x0

i − x1
i ‖

2 ≥
`

2
‖x0 − x1‖2.

Hence, ‖x0 − x1‖ ≤
√

2
` F0, and

‖x1 − x̄‖ ≤ ‖x0 − x1‖ + ‖x0 − x̄‖ ≤

√
2
`
F0 + ‖x0 − x̄‖,

which indicates x1 ∈ B(x̄, ρ). For k = 2, we have from (2.7) that (regard ωk
i ≡ 0 for i ∈ I1 ∪ I2)

F0 ≥ F1 − F2 ≥
s∑

i=1

L1
i

2
‖x1

i − x2
i ‖

2 −
s∑

i=1

L1
i

2
(ω1

i)2‖x0
i − x1

i ‖
2.

Note L1
i (ω

1
i)2 ≤ δ2

ω`0 for i = 1, ∙ ∙ ∙ , s. Thus, it follows from the above inequality that

`1

2
‖x1 − x2‖2 ≤

s∑

i=1

L1
i

2
‖x1

i − x2
i ‖

2 ≤ F0 +
`0

2
δ2
ω‖x

0 − x1‖2 ≤ (1 +
`0

`
δ2
ω)F0,

which implies ‖x1 − x2‖ ≤
√

2+2δ2
ω

` F0. Therefore,

‖x2 − x̄‖ ≤ ‖x1 − x2‖ + ‖x1 − x̄‖ ≤

(√
2
`

+

√
2 + 2δ2

ω

`

)
√

F0 + ‖x0 − x̄‖,

and thus x2 ∈ B(x̄, ρ).

18

Table 4.10

Comparison results on synthetic nonnegative tensor completion; bold are bad or slow.

Problem Setting APG-TC (prop’d) r = q APG-TC (prop’d) r = b1.25qc FaLRTC

N1 N2 N3 q SR relerr time relerr time relerr time

80 80 80 10 0.10 2.02e-004 4.09e+000 6.08e-004 6.88e+000 4.61e-001 3.17e+001

80 80 80 10 0.30 1.18e-004 2.52e+000 3.29e-004 5.85e+000 1.96e-002 1.96e+001

80 80 80 10 0.50 9.54e-005 2.22e+000 2.45e-004 5.28e+000 1.13e-002 1.52e+001

80 80 80 20 0.10 1.50e-004 9.55e+000 4.84e-004 1.60e+001 4.41e-001 2.47e+001

80 80 80 20 0.30 1.15e-004 6.08e+000 2.64e-004 1.23e+001 1.43e-001 1.17e+001

80 80 80 20 0.50 9.65e-005 5.01e+000 1.72e-004 1.27e+001 1.46e-002 1.95e+001

80 80 80 30 0.10 3.14e-003 1.64e+001 4.23e-004 2.66e+001 4.00e-001 2.08e+001

80 80 80 30 0.30 1.04e-004 1.12e+001 1.94e-004 2.11e+001 2.22e-001 8.12e+000

80 80 80 30 0.50 1.14e-004 9.91e+000 1.47e-004 2.00e+001 5.60e-002 1.28e+001

50 50 500 10 0.10 2.76e-004 1.16e+001 4.69e-004 2.03e+001 5.52e-001 1.83e+002

50 50 500 10 0.30 9.81e-005 6.24e+000 2.12e-004 1.62e+001 8.58e-002 9.69e+001

50 50 500 10 0.50 9.51e-005 5.34e+000 1.74e-004 1.63e+001 1.25e-002 9.63e+001

50 50 500 20 0.10 1.80e-004 2.45e+001 3.50e-004 4.37e+001 4.82e-001 1.32e+002

50 50 500 20 0.30 3.95e-003 1.34e+001 1.59e-004 3.91e+001 2.76e-001 5.82e+001

50 50 500 20 0.50 5.32e-003 1.18e+001 1.15e-004 3.53e+001 9.44e-002 5.59e+001

50 50 500 30 0.10 7.09e-003 3.90e+001 5.08e-004 6.76e+001 4.32e-001 1.18e+002

50 50 500 30 0.30 1.03e-004 2.54e+001 1.26e-004 6.32e+001 2.76e-001 5.04e+001

50 50 500 30 0.50 3.28e-003 2.30e+001 1.03e-004 5.56e+001 1.62e-001 4.30e+001

Suppose xk ∈ B(x̄, ρ) for 0 ≤ k ≤ K. We go to show xK+1 ∈ B(x̄, ρ). For k ≤ K, note

−∇fk
i (xk

i) + ∇xif(xk) ∈ ∂ri(x
k
i) + ∇xif(xk), i ∈ I1,

−Lk−1
i (xk

i − xk−1
i) −∇fk

i (xk
i) + ∇xif(xk) ∈ ∂ri(x

k
i) + ∇xif(xk), i ∈ I2,

−Lk−1
i (xk

i − x̂k−1
i) −∇fk

i (x̂k−1
i) + ∇xif(xk) ∈ ∂ri(x

k
i) + ∇xif(xk), i ∈ I3,

and

∂F (xk) =
{
∂r1(x

k
1) + ∇x1f(xk)

}
× ∙ ∙ ∙ ×

{
∂rs(x

k
s) + ∇xsf(xk)

}
,

so (for i ∈ I1 ∪I2, regard x̂k−1
i = xk−1

i in xk
i − x̂k−1

i and x̂k−1
i = xk

i in ∇fk
i (x̂k−1

i)−∇xif(xk), respectively)

dist
(
0, ∂F (xk)

)
≤
∥
∥(Lk−1

1 (xk
1 − x̂k−1

1), ∙ ∙ ∙ , Lk−1
s (xk

s − x̂k−1
s)

)∥∥+
s∑

i=1

∥
∥∇fk

i (x̂k−1
i) −∇xi

f(xk)
∥
∥ . (A.3)

For the first term in (A.3), plugging in x̂k−1
i and recalling Lk−1

i ≤ L, ωk−1
i ≤ 1 for i = 1, ∙ ∙ ∙ , s, we can easily

get

∥
∥(Lk−1

1 (xk
1 − x̂k−1

1), ∙ ∙ ∙ , Lk−1
s (xk

s − x̂k−1
s)

)∥∥ ≤ L
(
‖xk − xk−1‖ + ‖xk−1 − xk−2‖

)
. (A.4)

For the second term in (A.3), it is not difficult to verify
(
xk

1 , ∙ ∙ ∙ ,xk
i−1, x̂

k−1
i , ∙ ∙ ∙ ,xk−1

s

)
∈ B(x̄,

√
10ρ). In

addition, note ∇fk
i (x̂k−1

i) = ∇xif
(
xk

1 , ∙ ∙ ∙ ,xk
i−1, x̂

k−1
i , ∙ ∙ ∙ ,xk−1

s

)
. Hence,

∑s
i=1

∥
∥∇xif

k
i (x̂k−1

i) −∇xif(xk)
∥
∥ ≤

∑s
i=1 LG

∥
∥(xk

1 , ∙ ∙ ∙ ,xk
i−1, x̂

k−1
i , ∙ ∙ ∙ ,xk−1

s

)
− xk

∥
∥

≤ sLG

(
‖xk − xk−1‖ + ‖xk−1 − xk−2‖

)
.

(A.5)

Combining (A.3), (A.4) and (A.5) gives

dist(0, ∂F (xk)) ≤ (L + sLG)
(
‖xk − xk−1‖ + ‖xk−1 − xk−2‖

)
,

19

which together with the KL inequality (2.11) implies

φ′(Fk) ≥ (L + sLG)−1
(
‖xk − xk−1‖ + ‖xk−1 − xk−2‖

)−1
. (A.6)

Note that φ is concave and φ′(Fk) > 0. Thus it follows from (2.7) and (A.6) that

φ(Fk) − φ(Fk+1) ≥ φ′(Fk)(Fk − Fk+1) ≥

∑s
i=1

(
Lk

i ‖x
k
i − xk+1

i ‖2 − `k−1δ2
ω‖x

k−1
i − xk

i ‖
2
)

2(L + sLG) (‖xk − xk−1‖ + ‖xk−1 − xk−2‖)
,

or equivalently

s∑

i=1

Lk
i ‖x

k
i − xk+1

i ‖2 ≤2(L + sLG)
(
‖xk − xk−1‖ + ‖xk−1 − xk−2‖

)
(φ(Fk) − φ(Fk+1))

+
s∑

i=1

`k−1δ2
ω‖x

k−1
i − xk

i ‖
2.

Recalling ` ≤ `k−1 ≤ `k ≤ Lk
i ≤ L for all i, k, we have from the above inequality that

‖xk − xk+1‖2 ≤
2(L + sLG)

`

(
‖xk − xk−1‖ + ‖xk−1 − xk−2‖

)
(φ(Fk) − φ(Fk+1)) + δ2

ω‖x
k−1 − xk‖2. (A.7)

Using inequalities a2 + b2 ≤ (a + b)2 and ab ≤ ta2 + b2

4t for t > 0, we get from (A.7) that

‖xk − xk+1‖

≤
(
‖xk − xk−1‖ + ‖xk−1 − xk−2‖

) 1
2

(
2(L + sLG)

`
(φ(Fk) − φ(Fk+1))

) 1
2

+ δω‖x
k−1 − xk‖

≤
1 − δω

3

(
‖xk − xk−1‖ + ‖xk−1 − xk−2‖

)
+

3(L + sLG)
2`(1 − δω)

(φ(Fk) − φ(Fk+1)) + δω‖x
k−1 − xk‖,

or equivalently

3‖xk − xk+1‖ ≤ (1 + 2δω)‖xk − xk−1‖ + (1 − δω)‖xk−1 − xk−2‖ +
9(L + sLG)
2`(1 − δω)

(φ(Fk) − φ(Fk+1)). (A.8)

Summing up (A.8) over k from 2 to K and doing some eliminations give

K∑

k=2

(1 − δω)‖xk − xk+1‖ + (2 + δω)‖xK − xK+1‖ + (1 − δω)‖xK−1 − xK‖

≤(1 − δω)‖x0 − x1‖ + (2 + δω)‖x1 − x2‖ +
9(L + sLG)
2`(1 − δω)

(φ(F2) − φ(FK+1)).

Recalling ‖x0 − x1‖ ≤
√

2
` F0 and ‖x1 − x2‖ ≤

√
2+2δ2

ω

` F0, we have from the above inequality that

‖xK+1 − x̄‖ ≤
K∑

k=2

‖xk − xk+1‖ + ‖x2 − x̄‖

≤

√
2
`
F0 +

2 + δω

1 − δω

√
2 + 2δ2

ω

`
F0 +

9(L + sLG)
2`(1 − δω)2

(φ(F2) − φ(FK+1)) + ‖x2 − x̄‖

≤
9(L + sLG)
2`(1 − δω)2

φ(F0) +

(

2

√
2
`

+
3

1 − δω

√
2 + 2δ2

ω

`

)
√

F0 + ‖x0 − x̄‖.

Hence, xK+1 ∈ B(x̄, ρ), and this completes the proof of xk ∈ B(x̄, ρ) for all k ≥ 0.

20

Secondly, we prove (A.2) from (A.8). Indeed, (A.8) holds for all k ≥ 0. Summing it over k from N to T

and doing some eliminations yield

T∑

k=N

(1 − δω)‖xk − xk+1‖ + (2 + δω)‖xT − xT+1‖ + (1 − δω)‖xT−1 − xT ‖

≤(1 − δω)‖xN−2 − xN−1‖ + (2 + δω)‖xN−1 − xN‖ +
9(L + sLG)
2`(1 − δω)

(φ(FN) − φ(FT+1)),

which implies

∞∑

k=N

‖xk − xk+1‖ ≤ ‖xN−2 − xN−1‖ +
2 + δω

1 − δω
‖xN−1 − xN‖ +

9(L + sLG)
2`(1 − δω)2

φ(FN)

by letting T → ∞. This completes the proof.

A.2. Proof of Theorem 2.9. If θ = 0, we must have F (xk0) = F (x̄) for some k0. Otherwise,

F (xk) > F (x̄) for all sufficiently large k. The Kurdyka- Lojasiewicz inequality gives c ∙ dist(0, ∂F (xk)) ≥ 1

for all k ≥ 0, which is impossible since xk → x̄ and 0 ∈ ∂F (x̄). The finite convergence now follows from the

fact that F (xk0) = F (x̄) implies xk = xk0 = x̄ for all k ≥ k0.

For θ ∈ (0, 1), we assume F (xk) > F (x̄) = 0 and use the same notation as in the proof of Lemma 3.

Define Sk =
∑∞

i=k ‖x
i − xi+1‖. Then (A.2) can be written as

Sk ≤ C1φ(Fk) +
2 + δω

1 − δω
(Sk−1 − Sk) + Sk−2 − Sk−1, for k ≥ 2,

which implies

Sk ≤ C1φ(Fk) +
2 + δω

1 − δω
(Sk−2 − Sk), for k ≥ 2, (A.9)

since Sk−2 − Sk−1 ≥ 0. Using φ(s) = cs1−θ, we have from (A.6) for sufficiently large k that

c(1 − θ)(Fk)−θ ≥ (L + sLG)−1
(
‖xk − xk−1‖ + ‖xk−1 − xk−2‖

)−1
,

or equivalently (Fk)θ ≤ c(1 − θ)(L + sLG)(Sk−2 − Sk). Then,

φ(Fk) = c(Fk)1−θ ≤ c
(
c(1 − θ)(L + sLG)(Sk−2 − Sk)

) 1−θ
θ . (A.10)

Letting C3 = C1c
(
c(1 − θ)(L + sLG)

) 1−θ
θ and C4 = 2+δω

1−δω
, we have from (A.9) and (A.10) that

Sk ≤ C3 (Sk−2 − Sk)
1−θ

θ + C4 (Sk−2 − Sk) . (A.11)

When θ ∈ (0, 1
2], i.e., 1−θ

θ ≥ 1, (A.11) implies that Sk ≤ (C3 + C4)(Sk−2 − Sk) for sufficiently large k

since Sk−2 − Sk → 0, and thus Sk ≤ C3+C4
1+C3+C4

Sk−2. Note that ‖xk − x̄‖ ≤ Sk. Therefore, item 2 holds with

τ =
√

C3+C4
1+C3+C4

< 1 and sufficiently large C.

When θ ∈ (1
2 , 1), i.e., 1−θ

θ < 1, we get

Sν
N + Sν

N−1 − Sν
K+1 − Sν

K ≥ μ(N − K), (A.12)

for ν = 1−2θ
1−θ < 0, some constant μ > 0 and any N > K with sufficiently large K by the same argument as

in the proof of Theorem 2 of [3]. Note SN ≤ SN−1 and ν < 0. Hence, (A.12) implies

SN ≤

(
1
2

(
Sν

K+1 + Sν
K + μ(N − K)

)
) 1

ν

≤ CN− 1−θ
2θ−1 ,

for sufficiently large C and N . This completes the proof.

21

REFERENCES

[1] M. Aharon, M. Elad, and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse

representation, Signal Processing, IEEE Transactions on, 54 (2006), pp. 4311–4322.

[2] S. Amari, A. Cichocki, H.H. Yang, et al., A new learning algorithm for blind signal separation, Advances in neural

information processing systems, (1996), pp. 757–763.

[3] H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic

features, Mathematical Programming, 116 (2009), pp. 5–16.

[4] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Proximal alternating minimization and projection methods for

nonconvex problems: An approach based on the kurdyka-lojasiewicz inequality , Mathematics of Operations Research,

35 (2010), pp. 438–457.

[5] A. Auslender, Optimisation: méthodes numériques, Masson, 1976.

[6] B.W. Bader and T.G. Kolda, Efficient matlab computations with sparse and factored tensors, SIAM Journal on Scientific

Computing, 30 (2009), pp. 205–231.

[7] B. W. Bader, T. G. Kolda, et al., Matlab tensor toolbox version 2.5, January 2012.

[8] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems , SIAM Journal

on Imaging Sciences, 2 (2009), pp. 183–202.

[9] M.W. Berry, M. Browne, A.N. Langville, V.P. Pauca, and R.J. Plemmons, Algorithms and applications for approx-

imate nonnegative matrix factorization, Computational Statistics & Data Analysis, 52 (2007), pp. 155–173.

[10] J. Bobin, Y. Moudden, J.L. Starck, J. Fadili, and N. Aghanim, Sz and cmb reconstruction using generalized mor-

phological component analysis, Statistical Methodology, 5 (2008), pp. 307–317.

[11] J. Bochnak, M. Coste, and M.F. Roy, Real algebraic geometry, vol. 36, Springer Verlag, 1998.

[12] P. Bofill and M. Zibulevsky, Underdetermined blind source separation using sparse representations , Signal processing,

81 (2001), pp. 2353–2362.

[13] J. Bolte, A. Daniilidis, and A. Lewis, The lojasiewicz inequality for nonsmooth subanalytic functions with applications

to subgradient dynamical systems, SIAM Journal on Optimization, 17 (2007), pp. 1205–1223.

[14] J. Bolte, A. Daniilidis, A. Lewis, and M. Shiota, Clarke subgradients of stratifiable functions, SIAM Journal on

Optimization, 18 (2007), pp. 556–572.

[15] S.S. Chen, D.L. Donoho, and M.A. Saunders, Atomic decomposition by basis pursuit, SIAM review, (2001), pp. 129–

159.

[16] Y. Chen, M. Rege, M. Dong, and J. Hua, Non-negative matrix factorization for semi-supervised data clustering ,

Knowledge and Information Systems, 17 (2008), pp. 355–379.

[17] E.C. Chi and T.G. Kolda, On tensors, sparsity, and nonnegative factorizations, Arxiv preprint arXiv:1112.2414, (2011).

[18] S. Choi, A. Cichocki, H.M. Park, and S.Y. Lee, Blind source separation and independent component analysis: A

review, Neural Information Processing-Letters and Reviews, 6 (2005), pp. 1–57.

[19] A. CICHOCKI and A.H. PHAN, Fast local algorithms for large scale nonnegative matrix and tensor factorizations ,

IEICE transactions on fundamentals of electronics, communications and computer science, 92 (2009), pp. 708–721.

[20] D. Donoho and V. Stodden, When does non-negative matrix factorization give a correct decomposition into parts ,

Advances in neural information processing systems, 16 (2003).

[21] M.P. Friedlander and K. Hatz, Computing non-negative tensor factorizations, Optimisation Methods and Software,

23 (2008), pp. 631–647.

[22] L. Grippo and M. Sciandrone, On the convergence of the block nonlinear Gauss-Seidel method under convex constraints ,

Oper. Res. Lett., 26 (2000), pp. 127–136.

[23] S.P. Han, A successive projection method, Mathematical Programming, 40 (1988), pp. 1–14.

[24] C. Hildreth, A quadratic programming procedure, Naval Research Logistics Quarterly, 4 (1957), pp. 79–85.

[25] P.O. Hoyer, Non-negative matrix factorization with sparseness constraints, The Journal of Machine Learning Research,

5 (2004), pp. 1457–1469.

[26] T.P. Jung, S. Makeig, C. Humphries, T.W. Lee, M.J. Mckeown, V. Iragui, and T.J. Sejnowski , Removing elec-

troencephalographic artifacts by blind source separation, Psychophysiology, 37 (2000), pp. 163–178.

[27] C. Jutten and J. Herault, Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architec-

ture, Signal processing, 24 (1991), pp. 1–10.

[28] J. Karhunen, A. Hyvarinen, R. Vigário, J. Hurri, and E. Oja, Applications of neural blind separation to signal and

image processing, in Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference

on, vol. 1, IEEE, 1997, pp. 131–134.

[29] H.A.L. Kiers, Towards a standardized notation and terminology in multiway analysis , Journal of Chemometrics, 14

(2000), pp. 105–122.

[30] H. Kim and H. Park, Non-negative matrix factorization based on alternating non-negativity constrained least squares

22

and active set method, SIAM J. Matrix Anal. Appl, 30 (2008), pp. 713–730.

[31] H. Kim, H. Park, and L. Eldén, Non-negative tensor factorization based on alternating large-scale non-negativity-

constrained least squares, in Bioinformatics and Bioengineering, 2007. BIBE 2007. Proceedings of the 7th IEEE

International Conference on, IEEE, 2007, pp. 1147–1151.

[32] J. Kim and H. Park, Toward faster nonnegative matrix factorization: A new algorithm and comparisons , in Data Mining,

2008. ICDM’08. Eighth IEEE International Conference on, IEEE, 2008, pp. 353–362.

[33] , Fast nonnegative tensor factorization with an active-set-like method , High-Performance Scientific Computing,

(2012), pp. 311–326.

[34] Y.D. Kim and S. Choi, Nonnegative Tucker decomposition, in Computer Vision and Pattern Recognition, 2007. CVPR’07.

IEEE Conference on, IEEE, 2007, pp. 1–8.

[35] T.G. Kolda and B.W. Bader, Tensor decompositions and applications, SIAM review, 51 (2009), p. 455.

[36] K. Kurdyka, On gradients of functions definable in o-minimal structures, in Annales de l’institut Fourier, vol. 48,

Chartres: L’Institut, 1950-, 1998, pp. 769–784.

[37] M. Lai and Y. Wang, An unconstrained `q minimization with 0 < q < 1 for sparse solution of under-determined linear

systems, SIAM J. Optimization, 21 (2011), pp. 82–101.

[38] D.D. Lee and H.S. Seung, Learning the parts of objects by non-negative matrix factorization , Nature, 401 (1999),

pp. 788–791.

[39] , Algorithms for Non-Negative Matrix Factorization, Advances in Neural Information Processing Systems, 13 (2001),

pp. 556–562.

[40] H. Lee, A. Battle, R. Raina, and A.Y. Ng, Efficient sparse coding algorithms, Advances in neural information pro-

cessing systems, 19 (2007), pp. 801–808.

[41] S.Z. Li, X.W. Hou, H.J. Zhang, and Q.S. Cheng, Learning spatially localized, parts-based representation, in Computer

Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on,

vol. 1, IEEE, 2001, pp. 207–212.

[42] C.J. Lin, Projected gradient methods for nonnegative matrix factorization , Neural Computation, 19 (2007), pp. 2756–2779.

[43] J.K. Lin, D.G. Grier, and J.D. Cowan, Feature extraction approach to blind source separation, in Neural Networks for

Signal Processing [1997] VII. Proceedings of the 1997 IEEE Workshop, IEEE, 1997, pp. 398–405.

[44] J. Liu, J. Liu, P. Wonka, and J. Ye, Sparse non-negative tensor factorization using columnwise coordinate descent ,

Pattern Recognition, (2011).

[45] J. Liu, P. Musialski, P. Wonka, and J. Ye, Tensor completion for estimating missing values in visual data, IEEE

Transactions on Pattern Analysis and Machine Intelligence, (2012).

[46] S. Lojasiewicz, Sur la géométrie semi-et sous-analytique, Ann. Inst. Fourier (Grenoble), 43 (1993), pp. 1575–1595.

[47] D.G. Luenberger, Introduction to linear and nonlinear programming, (1973).

[48] Z.Q. Luo and P. Tseng, Error bounds and convergence analysis of feasible descent methods: A general approach , Annals

of Operations Research, 46 (1993), pp. 157–178.

[49] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online dictionary learning for sparse coding, in Proceedings of the 26th

Annual International Conference on Machine Learning, ACM, 2009, pp. 689–696.

[50] O.L. Mangasarian and R. Leone, Parallel successive overrelaxation methods for symmetric linear complementarity

problems and linear programs, Journal of Optimization Theory and Applications, 54 (1987), pp. 437–446.

[51] M. Mørup, L.K. Hansen, and S.M. Arnfred, Algorithms for sparse nonnegative Tucker decompositions, Neural com-

putation, 20 (2008), pp. 2112–2131.

[52] J.M. Ortega and W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press,

1970.

[53] P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with optimal utilization of error

estimates of data values, Environmetrics, 5 (1994), pp. 111–126.

[54] V.P. Pauca, J. Piper, and R.J. Plemmons, Nonnegative matrix factorization for spectral data analysis, Linear Algebra

and its Applications, 416 (2006), pp. 29–47.

[55] V.P. Pauca, F. Shahnaz, M.W. Berry, and R.J. Plemmons, Text mining using nonnegative matrix factorizations, in

Proc. SIAM Inter. Conf. on Data Mining, Orlando, FL, 2004.

[56] M.J.D. Powell, On search directions for minimization algorithms, Mathematical Programming, 4 (1973), pp. 193–201.

[57] M. Razaviyayn, M. Hong, and Z.Q. Luo, A unified convergence analysis of coordinatewise successive minimization

methods for nonsmooth optimization, preprint, (2012).

[58] B. RECHT, M. FAZEL, and P.A. PARRILO, Guaranteed minimum-rank solutions of linear matrix equations via nuclear

norm minimization, SIAM review, 52 (2010), pp. 471–501.

[59] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization,

14 (1976), pp. 877–898.

[60] R.T. Rockafellar and R.J.B. Wets, Variational analysis, vol. 317, Springer Verlag, 1998.

23

[61] RWH Sargent and DJ Sebastian, On the convergence of sequential minimization algorithms, Journal of Optimization

Theory and Applications, 12 (1973), pp. 567–575.

[62] C. Serviere and P. Fabry, Principal component analysis and blind source separation of modulated sources for electro-

mechanical systems diagnostic, Mechanical systems and signal processing, 19 (2005), pp. 1293–1311.

[63] A. Shashua and T. Hazan, Non-negative tensor factorization with applications to statistics and computer vision , in

Proceedings of the 22nd international conference on Machine learning, ACM, 2005, pp. 792–799.

[64] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Method-

ological), (1996), pp. 267–288.

[65] P. Tseng, Dual coordinate ascent methods for non-strictly convex minimization , Mathematical Programming, 59 (1993),

pp. 231–247.

[66] , Convergence of a block coordinate descent method for nondifferentiable minimization , Journal of Optimization

Theory and Applications, 109 (2001), pp. 475–494.

[67] Paul Tseng and Sangwoon Yun, A coordinate gradient descent method for nonsmooth separable minimization , Math.

Program., 117 (2009), pp. 387–423.

[68] L.R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31 (1966), pp. 279–311.

[69] L. Wang, J. Zhu, and H. Zou, Hybrid huberized support vector machines for microarray classification and gene selection ,

Bioinformatics, 24 (2008), pp. 412–419.

[70] J. Warga, Minimizing certain convex functions, Journal of the Society for Industrial and Applied Mathematics, 11 (1963),

pp. 588–593.

[71] M. Welling and M. Weber, Positive tensor factorization, Pattern Recognition Letters, 22 (2001), pp. 1255–1261.

[72] W. Xu, X. Liu, and Y. Gong, Document clustering based on non-negative matrix factorization, in Proceedings of the

26th annual international ACM SIGIR conference on Research and development in informaion retrieval, ACM, 2003,

pp. 267–273.

[73] Y. Xu, W. Yin, Z. Wen, and Y. Zhang, An alternating direction algorithm for matrix completion with nonnegative

factors, Journal of Frontiers of Mathematics in China, Special Issue on Computational Mathematics, 7 (2011), pp. 365–

384.

[74] M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables , Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 68 (2006), pp. 49–67.

[75] S. Zafeiriou, Algorithms for nonnegative tensor factorization, Tensors in Image Processing and Computer Vision, (2009),

pp. 105–124.

[76] Q. Zhang, H. Wang, R.J. Plemmons, and V. Pauca, Tensor methods for hyperspectral data analysis: a space object

material identification study, JOSA A, 25 (2008), pp. 3001–3012.

[77] Y. Zhang, An alternating direction algorithm for nonnegative matrix factorization , Rice Technical Report, (2010).

[78] M. Zibulevsky and B.A. Pearlmutter, Blind source separation by sparse decomposition in a signal dictionary , Neural

computation, 13 (2001), pp. 863–882.

24

